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Abstract: In today's information age, developing data 
science competencies has become vital to fostering 
responsible citizenry. However, the actual techniques 
learners need to become proficient in are still some-
what “in-construction”, as the relatively new field of 
data science is constantly expanding to meet new 
data-related demands. Data science education needs 
to develop innovative means to keep up with this 
expansion that focus less on proficiency in specific 
techniques, but rather introduce novices to authentic 
data practices, and the authentic purposes directing 
the authentic practices. This paper focuses on a spe-
cific practice, the use of simulations to generate and 
examine data, in the context of authentic scientific 
Citizen Science research. We provide a case study of 
one pair of middle school students' engagement in an 
extended learning sequence including simulation ac-
tivities inspired by authentic data practices, adapted 
to also be authentic for young students. While the 
simulation activity was inspired by the scientists' pur-
poses, our findings illustrate four different actual pur-
poses the students attributed to it. We also show that 
as the students deepened their engagement with the 
simulation, they gradually appropriated its intended 
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INTRODUCTION

Learning as enculturation

As humanity moves into the data epoch, the need for a data literate citizenry has never been 
so vital (Finzer, 2013). Recent events, such as the COVID-19 pandemic, illustrate the need to 
consider complex factors as they unfold in the real world and how decisions based on vast, 

purpose, alongside articulating more mature views of 
data-related concepts. The conclusions summarize 
the four different purposes the students expressed 
and identify aspects of design that contributed to the 
gradual re-shaping process of their actual purposes.

K E Y W O R D S
authenticity, computerized-simulations, data science education, 
educational technology, purposes

Practitioner notes

What is already known about this topic
•	 Introducing students to data science and statistics has become essential nowadays.
•	 Students need to be introduced to authentic data practices, but also to the authen-

tic purposes motivating these practices.
•	 Utilizing computerized simulations is a common authentic practice in science and 

statistics.
•	 The pedagogical, intended, use of computerized simulations can be inspired by 

the authentic purposes but should also be adapted to be authentic for the students.
•	 Students may have actual purposes that differ from the authentic and intended 

purposes.
What this paper adds
•	 A case study of a pair of middle school students' engagement with a computerized 

simulation tool, as part of their participation in a Citizen Science project.
•	 The students expressed four actual purposes for the simulation.
•	 The students' initial purposes differed from the intended purposes, limiting their 

participation.
•	 Key aspects of the overall activity design ultimately supported the students to ap-

propriate the intended purpose of the simulation and more deeply engage with the 
intended statistical notions.

Implications for practice and/or policy
•	 It is important to consider that students may attribute purposes that differ from those 

of the teacher or the activity designer, to any learning activity they engage in.
•	 Making the intended purposes more explicit may be helpful, but potentially not 

enough for students to appropriate them.
•	 Researchers' prompts, students' freedom to reshape their use of the simulation 

tool and productive discussion norms can be beneficial aspects.

 14678535, 2022, 5, D
ow

nloaded from
 https://bera-journals.onlinelibrary.w

iley.com
/doi/10.1111/bjet.13238 by C

ochrane Israel, W
iley O

nline L
ibrary on [11/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1204  |      DVIR and BEN-ZVI

but limited data, can have dramatic consequences on human life, economics, social chal-
lenges, and democracy. Although the field of data science is rapidly expanding, it is strug-
gling to keep up with the changing demands brought by the information age (Wise, 2020). 
Current research in data science education faces the challenging task of designing, imple-
menting, evaluating and refining effective pedagogies, while the actual techniques learners 
need to become proficient in are still somewhat “in-construction” (Lee & Wilkerson, 2018). 
Adopting a sociocultural perspective of learning can help address this challenge. From a 
sociocultural perspective, learning can be seen as transforming participation in cultural ac-
tivities (Rogoff, 2003), where culture is seen as “the constellations of practices historically 
developed and dynamically shaped by communities in order to accomplish the purposes 
they value” (p. 686, Nasir et al., 2006). Adopting this view reformulates the goal of teaching 
as supporting students' reshaping of the ways in which they participate in authentic disci-
plinary activities to more endorsed or culturally valued forms of participation, rather than 
develop technical proficiency (Hod & Sagy, 2019). This view also highlights the central role 
purposes hold in cultural and educational activities. Introducing students to a disciplinary 
culture therefore should also include introducing them to the purposes the disciplinary ex-
perts value or attribute to endorsed disciplinary practices.

Authenticity and multiple purposes

While some refer to authenticity as congruence with the practices of the community of ex-
pert practitioners of the targeted domain (Lave & Wenger, 1991), by importing such “authen-
tic” activities into a classroom, underlying principles of the classroom or school culture are 
typically not accounted for (Linchevski & Williams, 1999). For an activity to be considered 
authentic to learners, it must also support inclusion of their previously cultivated dispositions 
and beliefs (Hod & Sagy, 2019) and thus be congruent with their pre-existing practices, inter-
ests and goals. An activity that would be doubly authentic, to the practice and the students, 
can potentially serve as a gateway activity: one which utilizes learners' existing resources 
and provides an experience through which they can engage with the underlying principles 
of the experts' practice. These experience-based insights can later be leveraged to foster 
engagement in the formal disciplinary culture's practices.

The way students participate in any classroom activity is influenced by the purpose they 
attribute to it (Lavie & Sfard, 2019). We view the notion of purpose similarly to Ainley et al.'s 
(2006) definition of a purposeful task as “one that has a meaningful outcome for the pupil, 
in terms of an actual or virtual product, or the solution of an engaging problem” (p. 29). 
However, in their discussion they restrict their use of the term purpose as one that strictly 
“refers to the perceptions of the pupil”. Inspired by Lavie and Sfard's (2019) definition of task, 
we extend Ainley et al.'s use of the term, to refer to the potentially different purposes (ie, what 
would be considered a meaningful outcome or solution) of each of the interlocutors—be it 
those present in the room (eg, student, teacher) or those who design the activity and re-
search students' engagement in it.

While the designed purpose of a gateway activity may be influenced by authentic dis-
ciplinary purposes, the purposes students attribute to it may vary greatly (Dvir & Ben-
Zvi, 2021a). Even when an authentic disciplinary practice is adapted to a doubly authentic 
activity, students' personal purposes may be vastly different than the designed purpose of 
the task (Ainley et al., 2006), potentially hindering their adaptation of the authentic endorsed 
purposes and therefore the procedures promoting them that form the endorsed authentic 
practice (Lavie & Sfard, 2019). Furthermore, when specifically designed to have “a meaning-
ful outcome for the pupil” (Ainley et al., 2006, p. 29), what students consider as meaningful 
can encourage them to act in a way that is at odds with the intended practice. For example, 
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in the context of statistics or data science, students might consider the purpose, or meaning-
ful outcome of a data investigation to be validating their conjecture (as opposed to examining 
or refuting it, Popper, 1963), and therefor would champion biased depictions of their data 
(Dvir & Ben-Zvi, 2018, 2021a). To attend to these potential discrepancies in purpose, authen-
tic disciplinary purposes should be embedded in the design of a classroom culture, however 
one should also be mindful that the actual culture fostered in a classroom might be infused 
with additional or different purposes. Inspired by Hod and Sagy's (2019) distinction between 
authentic (eg, data science), intended (the designed classroom culture) and actual culture, 
in this paper we wish to explore students' personal or actual purposes, in relation to the de-
signed intended and authentic disciplinary purposes, focusing on a pedagogical adaptation 
of one authentic disciplinary practice—using computerized simulations.

The practice of utilizing computerized simulations as part of 
authentic and intended cultures

While hands-on simulations have long been part of the scientific and statistical practice, 
technological advancements have enabled the proliferation of computerized simulations as 
a fully endorsed means to examine new, previously unaccounted for phenomena (Ahrweiler 
& Wörmann, 1998). In general, the role of a simulation is to provide often visual manifesta-
tions for unseen processes such as abstract notions (Segala & Lynch, 1995), or microscopic 
behaviour (Binder, 1995), that allow tinkering with and examining unfamiliar mechanisms, 
minimizing the need for approximations (Heermann, 1990). Although utilized in many dis-
ciplines, the purpose of a simulation may differ. For example, while in science “the main 
purpose of the simulation is insight [about scientific behavior], not data” (p. 2, Stoltze, 1997), 
in statistics the main role of simulations is indeed examining the data that an unfamiliar (or 
computationally complex) model can generate (Cobb, 2007), reflecting differences in the 
values and practices characteristic to each disciplinary culture. In data science, there is an 
additional layer of complexity to define the main role of the authentic use of simulations, 
as the data science culture is actually at the intersection of several disciplinary cultures, 
including statistics and the culture of the disciplinary context (eg, science) for which the data 
analysis is commissioned (Finzer, 2013).

Beyond authentic practice, simulation tools have been found to be beneficial in support-
ing students' scientific (Falloon, 2019) and mathematical (Hillmayr et al., 2020) reasoning, 
particularly when embedded in doubly authentic learning activities where the authentic prac-
tice is adapted to also be authentic for learners (Garfield et al., 2012; Hillmayr et al., 2020). 
Computerized simulations allow visual manifestations of abstract notions, and thus, afford 
more tangible explorations of them (Arcavi, 2003). Technological advancements can free the 
learner from focusing on mathematical procedures (Cobb, 2007) or laborious computations 
(eg, Rubin & Hammerman, 2006) related to the simulated phenomenon, as well as reveal 
naïve views they might hold (Liu & Lin, 2010). Furthermore, computerized simulations, as 
opposed to hands-on simulations, can provide the learner with a more extensive experience 
of the simulated process or notion (Garfield et al., 2012). The designed intended purpose 
of pedagogical utilizations of simulations therefor typically includes raising the accessibility 
to complex notions, thus might be different than what an expert would have employed it for 
(Budgett & Pfannkuch, 2018). Even doubly authentic simulation-based activities, inspired by 
authentic practice, are often infused with additional educational purposes (Manor & Ben-
Zvi,  2017), pending on the designed intended culture and the general educational goals 
(Hod & Sagy, 2019). We describe now an example from data science education for such a 
doubly authentic design, and its intended purposes. Focusing on this design, this paper will 
explore the actual purposes students attributed to their simulation use.
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Intended purposes of an integrated modeling approach

The integrated modeling approach (IMA, Manor & Ben-Zvi, 2017) is a doubly authentic ap-
proach to introduce young learners to the culture of statistics and data science, inspired 
both by authentic statistical practices, as well as students' knowledge, skills, interests and 
potential challenges. The approach is inspired by two authentic practices—investigating 
data to formulate statistical inferences (Makar & Rubin,  2018) and probability modeling 
(Pratt, 2000). While pedagogical adaptations of each of these practices have historically 
been researched separately (Makar et al., 2011; Mewborn et al., 2007), recent trends in sta-
tistics education have championed integrating the two, as is customary to expert practice, to 
support novices to relate probabilistic understandings to data-based inferences (Pfannkuch 
et al., 2018). While the IMA introduces learners to each practice separately, referring to each 
as a separate world of inquiry (the real and probabilistic worlds), it offers a unique form of 
connecting between them.

Learners begin by conducting “real-world” data investigations with the purpose of formu-
lating “real-world” data-based inferences, facilitated by TinkerPlots (Konold & Miller, 2015), 
designed to accommodate young learners to easily construct a variety of data represen-
tations. Upon formulating inferences, students are encouraged to articulate and consider 
the uncertainty related to formulating claims beyond the data at hand. Having articulated 
uncertainty-related concerns (often informally probabilistic in nature, such as ‘can I trust a 
sample of this size to represent a larger population?’), they are introduced to the probability 
world, as a realm to explore the concern they expressed.

Their probabilistic exploration begins with designing a model of their current inference 
utilizing various options of the TinkerPlots Sampler.1 The model design is image-based and 
the model they create depicts their specific view of the investigated phenomenon. However, 
the Sampler model has a built-in probabilistic mechanism that allows learners to generate 
random samples from the population they designed. As students generate more and more 
samples, they experience the random sampling process and the sampling variability their 
model can generate. They ultimately utilize their experience with this simulation to formu-
late probabilistic insights about the samples' behaviour (eg, this sample size is too small to 
represent the population) and implement these returning back to continue their preceding 
real-world data investigation (eg, by collecting more data).

The intended purpose of the IMA simulation utilization is an adaptation of the authentic sta-
tistical use of simulations (eg, examining what data an unfamiliar model can generate). The 
intended purpose is introducing novices to the random sampling process and related statis-
tical notions (ie, sample representativeness, sampling variability and sample-population re-
lations) in a way that they can connect these to their real-world data investigation. However, 
learners often exhibit or articulate different purposes for the use of the simulation and the 
simulated samples they generate (eg, to learn about the real-world population, Dvir & Ben-
Zvi,  2021a; to prove the simulation has been tampered with, Dvir & Ben-Zvi,  2021b), in-
fluencing their learning outcomes (eg, favouring simulated samples over real data, Dvir & 
Ben-Zvi, 2021a; disconnecting the probability-world insight from real-world sampling, Dvir & 
Ben-Zvi, 2021b). Although these discrepancies between the intended and actual purposes 
have been mentioned, they have not yet been thoroughly examined. Furthermore, the previ-
ous implementations of IMA-inspired simulations have focused on everyday contexts (Aridor 
& Ben-Zvi, 2019). Students might encounter additional challenges when the real-world con-
text of inquiry is scientific in nature, as often is the case in authentic data science practice. 
Focusing on a recent implementation of an IMA-inspired learning sequence in the context 
of a complex scientific phenomenon, in this paper we examine: What actual purposes can 
young students attribute to IMA-inspired simulation activities, and how can these change 
throughout their participation?
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METHOD

This study was conducted as part of the Connections project, a longitudinal design and 
research project (began at 2005), whose goal is promoting and examining young learners' 
statistical reasoning in a technology-enhanced, inquiry-based learning environment, cur-
rently collaborating with Taking Citizen Science to School (TCSS2) research center. TCSS 
examines the pedagogical potential of incorporating students as participants in Citizen 
Science projects, a genre of research incorporating the assistance of the public to collect 
vast amounts of data in less costly and time efficient ways (Kelling et al., 2015). Often, the 
nature of the scientific inquiry is closely connected to its participants' everyday lives (Jordan 
et al., 2015). Therefore, students' engagement in these projects has the potential of being 
doubly authentic—to the students, as well as to the culture of science characterizing the 
real-world ongoing research they contribute to. If the students have the opportunity to also 
meaningfully engage with the data they generate, their participation can also be authentic 
to the culture of statistics.

We employed an instrumental case study approach (Stake, 1995) to provide in depth 
accounts of the purposes young students attribute to their use of the simulation, and how 
these changed as they participated in the project's preliminary research. We chose a case 
study approach since our goal is to offer an in-depth, multi-faceted account of students ini-
tial and changing purposes for a simulation, a relatively complex yet nuanced process, as 
it occurred in the setting we designed. Customary to design research (Bakker, 2004) and 
due to the exploratory nature of this study, focusing on a previously untested novel learning 
sequence, this preliminary research focused on one pair of middle school students (ages 
13 and 14), with the goal of later scaling up the design. The IMA-inspired learning sequence 
included both real-world and probability world activities, adapted to the scientific context 
of a citizen science project the pair contributed to. We open this section with information 
about the Citizen Science project and the learning sequence the pair engaged in. We then 
introduce the participating pair and describe the data collection and analysis we employed.

The Radon citizen science project

The pair participated in an eight 90-minute-lessons learning sequence3 as part of the Radon 
(“the silent killer”, an omnipresent inert gas, dangerous in high concentrations) TCSS pro-
ject. As with other Citizen Science projects, the omnipresence of the Radon gas, and its 
health hazards, make its monitoring and exploration highly relevant to the project partici-
pants' everyday lives (Jordan et al., 2015). Participating in the authentic scientific Radon 
investigation offers authentic experience of the scientific culture, and the learning sequence 
we developed was particularly designed to also meaningfully engage the students with the 
data generated by their participation. The learning sequence opened with an introduction 
to the Radon project, and, in accordance with the IMA (Manor & Ben-Zvi, 2017), followed 
with three real-world data investigations leading to a subsequent probability world investiga-
tion.4 The investigations were specifically designed as gateway activities inspired by one 
of the scientists' authentic purposes: modeling a behaviour that is unique to Radon and is 
currently un-explained, the Radon temporal variation (high, frequent, non-systematic, mo-
mentary fluctuations). An innovative measuring tool the scientists used and students were 
to utilize to collect data was also central to the activity design. The measurement given by 
this tool is the mean Radon Concentration Level (RCL) in four days, and the students were 
planned to ultimately examine the big data set collected by the project's participants. To 
scaffold their engagement with the latter data, thus make it authentic to the learners as well 
as to the practice, the students began by examining additional authentic data sets, collected 
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by the scientists in their lab, originally intended for tracking the concentration of Radon gas 
to insure the lab adheres to health regulations. In accordance with the ‘growing samples’ 
heuristic (Bakker, 2004), the students gradually examined 24 (one day), then 48 (two days) 
and finally 72 (three days) of hourly Radon measurements. The designed purpose of their 
real-world data investigations was to “learn more about Radon”, meaning, (1) to experience 
and model its temporal variation; and (2) to emergently consider the mean as a representa-
tive of Radon concentration.

Upon formulating an inference about the Radon's behaviour, the students were encour-
aged to articulate their uncertainty and its origins. Having experienced the temporal variation 
that was evident in their three-day data, both students expressed concerns about formulating 
general claims about Radon's yearly behaviour based only on three days of measurement. 
In accordance with IMA, the Sampler simulation tool was then introduced with intended 
purposes adapted to be authentic to the students' needs as well as the scientists' actual 
practices. The intended general IMA purpose was adapted to students' examining sampling 
variability to (1) discover that a four-day measurement is significantly more representative 
than a three-day measurement (aligned with the authentic use of the scientists' short-term 
measurement device); and (2) develop an estimation of the maximum error of a four-day 
mean measurement. While these were the intended purposes of the use of the simulation, 
the students articulated different actual purposes, which are the focus of this paper.

The participants

Liv (13-years-old, grade 8) and Yoni (14, 9) are articulate middle school students from a pub-
lic school in northern Israel. Both had no prior experience with data investigations and were 
chosen as they agreed to participate in the study, were verbal and open, thus were able 
and willing to share and explain their thoughts, considerations and concerns. Furthermore, 
early in the learning sequence, the pair emergently mentioned simulations as part of what 
they believed the scientists utilize, thus infused simulations into the ongoing conversion. The 
accompanying researchers therefore had many opportunities to inquire about the students' 
views of simulations, resulting in an abundance of resources to deduce the purposes they at-
tributed to it and how these changed throughout their engagement in the learning sequence.

Data collection and analysis

All of the participants' actions were videotaped by camera and Zoom,5 concurrently docu-
menting the students' computer screen and articulations. The data corpus was transcribed 
and analysed according to the interpretative microgenetic method (Siegler, 2006) by the two 
authors and at least one additional Connections research team member. The transcripts, 
generated by the entire research team, included any articulation expressed (by the students 
and the researchers), any actions taken (eg, changes to the data representation documented 
both verbally and visually via screenshots), along with any additional gestures (written in 
squared brackets to distinguish them from verbal articulations). The unit of analysis was a 
single full utterance (eg, a students' full response to the researcher's question, until comple-
tion or until interrupted by another speaker).

The analysis began by reviewing each utterance and interpreting any vague or unclear 
words (eg, what does “it” referred to), considering the context of the utterance, and the ac-
companied gestures and actions (eg, in the previous utterance the researcher asked what 
the Sampler simulation would generate, and in the student's response, while saying “it” she 
pointed towards the image of the Sampler model they created, currently visible on their 
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       |  1209STUDENTS' PURPOSES ENGAGING WITH SIMULATIONS

computer screen). For each utterance initial interpretations of its general meaning were 
noted (eg, the student is expressing her view of the type of data the Sampler model would 
generate), again in consideration of its context (eg, prior articulations). The second stage of 
the analysis, in accordance with the goal of this study, focused on the students'6 utterances 
that included explicit and implicit mentioning of the simulation tool (eg, “because we gave it 
[the Sampler model] a range … of 48% [in the second column], it increases the chances that 
they [sampled data] would be taken out form here [the second column]”), and the actions 
they took while utilizing the simulation tool. Utilizing our definition of purpose as a mean-
ingful outcome or solution (Ainley et al., 2006), the interpretated general meaning of each 
relevant utterance was re-examined to suggest any implied possible purpose the students 
attributed to the simulation (eg, the student is running the simulation to generate samples 
she can use to further explore the phenomenon, expecting it would only generate data that 
is similar to the Sampler design, indicating she considered a meaningful outcome of the sim-
ulation to be generating similar data). If more than one purpose was implied, the full context 
of the utterance was again reviewed to determine the most probable purpose. Finally, the 
interpreted purposes were reviewed to identify commonalties, allowing to classify all of the 
relevant utterances into one of the following four broad types of purposes: (1) generating 
scientific (contextual) information; (2) generating identical or similar data; (3) examining the 
probabilistic nature of random sampling; and (4) examining the probabilistic nature of ran-
dom sampling to inform the real-world data investigation. Key scenes were discussed and 
triangulated, by going back and forth in the data corpus, by examining various data sources 
and by discussing various possible interpretations among at least three researchers until 
reaching consensus (Schoenfeld, 2007b).

RESULTS

In this section, we illustrate the four types of purposes the students expressed for utiliz-
ing the Sampler simulation. These are described chronologically showcasing not only the 
various purposes they held, but also how these progressed as the students deepened their 
engagement with the simulation.

Simulations as a tool for generating scientific (contextual) information

During the real-world data investigations, the students were both hesitant to formulate any 
inferences beyond the three-day hourly data they were examining about the Radon yearly 
behaviour. The concern they repeatedly expressed was based on their view that the varia-
tion they observed in their data can be fully explained by environmental conditions, a cause-
and-effect view, but they did not know what all the factors were or how they can affect the 
RCLs. In discussing their belief that the scientists have more knowledge than they do about 
the effects of environmental conditions, Liv emergently introduced the term “simulation” to 
the conversation:

1 L: They [the scientists] can conjecture what might happen because they tested heat, for 
example … did a simulation, so they have more information about the quantity of radon in 
the summer as opposed to the winter, and we do not have that information, so we do not 
know how it [RCL] will change in different climates …

2 R1: … Do you think scientists can check everything?

3 L: Not everything, but they can do more than we can … That's why they need to make many 
conjectures … and make educated guesses …
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1210  |      DVIR and BEN-ZVI

4 R1: And when they do not have the option of physically going to check something, do they have 
any additional options beyond just conjecturing?

5 L: Try to do a simulation of it, like we see here [real sample]. These [the real data] are real 
things, but you can do it in laboratory conditions

6 R1: What does simulation mean?

7 L: A simulation is an un-natural thing they create, not a natural situation, in laboratory 
conditions

8 Y: … Simulation basically will be not the real thing, as opposed to laboratory conditions that 
can be real but in controlled conditions, but it is still Radon, is still a phenomenon that 
happens in the real world and is even common, as opposed to simulation. It is like trying 
to do it in a less substantive way

Liv referred to “simulations” as one means the scientist has to obtain “more information” 
about the effects of environmental conditions, such as temperature [1], again implying the 
cause-and-effect view both students had earlier expressed. Building on the students' men-
tioning of the formal scientific practice, the researcher questioned if they believed scientists 
can “check everything” [2], referring to previous discussions about the multitude of potential 
impactful environmental conditions. In Liv's response she again implied how without “check-
ing everything”, one is left with only “conjectures” or “educated guesses” [3], reflecting the 
pair's full uncertainty with formulating any general claims. Implying that not everything can 
be “physically checked” [4], challenging Liv's claim, the researcher implied one of the bene-
fits simulations can afford—something scientists can do beyond mere conjecturing. Liv's re-
sponse acknowledged this benefit [5], but also conveyed her view of a simulation as means 
to generate information that is similar to the real-world data they were examining, but in 
restricted (“laboratory”, “un-natural”) conditions [7]. Yoni's view of simulations was likewise 
a tool to generate additional information, but he emphasized that this information would not 
be “real” and would be generated “in a less substantive way” [8]. Despite the different de-
pictions, the pair's shared initial view of “simulations” was a scientific practice the scientists 
employ to generate more scientific information about the cause-and-effects of attributes.

Simulation as a tool to generate identical or similar data

The students continued their gradual real-data investigation and concluded it in the sixth 
lesson. Asked to formulate concluding inferences about the Radon yearly behaviour, Yoni 
again expressed his concern:

9 Y: My conjecture was that according to these [real-world] data from one until eight [pm] there 
would be substantially less radon than other hours during the day, but it's a theory, we 
have no way of proving it in other days …

10 R2: … Does this mean that we need to continue and examine theories?

11 Y: Of course, every detail

Yoni's concern again implied the pair's uncertainty regarding their ability to confidently 
formulate general claims about the Radon's yearly behaviour [9]. It also echoed their pre-
vious discussion about simulations—he had now formulated a conjecture that cannot be 
proven [9], thus needs to be further meticulously examined [10, 11]. Building on the prior 
exchange, the researcher then introduced the Sampler as a means to “help you answer your 
questions” [12], and instructed the pair how to utilize it to design what they believed about the 
Radon's yearly behaviour, based on their three-day sample. The students ultimately created 
a Sampler model fully based on their real-world sample (Figure 1).
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       |  1211STUDENTS' PURPOSES ENGAGING WITH SIMULATIONS

Although the students complied with the researcher's instruction, in the next lesson it 
was evident that both students were unsure about the role of the Sampler model they de-
signed (eg, “I have no idea what is the meaning of this model” [Yoni, 13]). Together with the 
researcher they recalled how they constructed the Sampler model based on the real-data. 
After recalling how the two were connected, the researcher encouraged them to consider 
the different role each of them had:

14 R: So what is the difference [between the sampler model and the real sample]? Why are we 
moving to the simulation world7?

15 L: Because we want to check a random sample, that it [the Sampler] will give us three random 
samplings [days] and not specific, so it will give us more information about one year

16 Y: … I think that it is because we do not have a budget to measure every hour of every day … 
We are doing this to make the process more efficient, you can basically do this more 
accurately with real results but this makes the process more efficient, makes it simpler

Liv repeated in her response the role she previously associated with simulations, gener-
ating “more information” [1] but connected it to their current investigation, “more information 
about one year” [15]. Yoni added an additional real-world practical motivation for conducting 
simulations, efficiency [16]. Both students seemed to agree the simulation would substitute 
real data gathering, but the nature of the data they expected it to generate was unclear. To 
further understand the students' perceived role of simulation, the researcher inquired about 
what the students thought that can be learned from their simulation:

17 Y: I am assuming that this software knows sort of what we know [about] how radon behaves, 
right?

18 R2: It [the Sampler] knows what you … drew in the model, that is what it knows

19 Y: So it [the software] will give us what was given in the model … What the software will give me 
will be based on this [the Sampler design] because this is the data we gave it

20 R2: What does that mean?

21 Y: That it [the software] will be accurate more about the laboratory itself, under the assumption 
that the data here [real sample] are accurate and the Radon behaves the same in the 
three really specific days [in the real sample]

22 L: I think that because we gave it [the Sampler model] a range, that we thought that it was the range 
of RCLs … If I put here the range of 48% it increases the chances that they would be taken out 
form here? I think this is how it is supposed to be, because I said that there were a lot of cases 
where the Radon is like this [350–650], so it will take it out of here [the 350–650 column]

F I G U R E  1   The students' sampler design (right) based on the real-world data (left)
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1212  |      DVIR and BEN-ZVI

23 R2: Yoni is saying that … because we built it [the Sampler] according to what we saw in the lab 
[real-world data], the sample we take out of the machine randomly will help us learn about 
the real world, about what happens in the lab … is that what you are saying?

24 Y: A lot of options go through [my mind] about the sample that we see and many things 
[environmental factors] that can change it, so I think you can learn [from the Sampler] but 
it is very very very dependent [on environmental conditions]

In response to what can be learned from the Sampler, Yoni questions what the Sampler 
“knows”, referring specifically to the scientific context of “how Radon behaves” [17]. When 
the researcher provided Yoni with the information he requested, restricting the software's 
“knowledge” to what the students had designed [18], not to scientific information about the 
Radon, Yoni then expressed a new expectation about the simulation: the data their model 
will generate will be identical to what was “given” (designed) in the model [19]. Prompted to 
elaborate [20], Yoni restricted what can be learned from the Sampler: one can only learn 
about about specific days that Radon behaves in “the same” way it did during the three days 
of real-world data collection and the location, “laboratory”, they were collected from [21]. Liv 
too expressed an expected relation between the Sampler design (eg, “I put here” [22]) and 
the data it would generate, but one that was more probabilistic (eg, “increases the chances”) 
than Yoni's, relating to the relative frequency in their designed model. The researcher re-
iterated what she understood from what the pair, specifically Yoni, had articulated [23], ask-
ing if he considered the potential simulated data as a means to learn about the Radon's 
behaviour. Yoni explicitly re-iterated his hesitation connecting his current view of the role of 
the simulation and his view that all variation in the data can be fully explained by cause-and-
effect: because the Radon's behaviour is dependent on many factors (not accounted for by 
the Sampler device) there is not much one can “learn” more generally from the simulation 
[24], still expressing the pair's full uncertainty in formulating general claims.

In the conversation that followed the latter exchange, Yoni again mentioned a real-world 
scientific motivation for simulations (eg, “it makes sense, it is even very very smart how 
we do this instead of waiting for a whole year” [25]) but also its limitations (eg, “because 
it doesn't take into account what can cause dramatic change” [26]). These indicated that 
while Yoni acknowledged the scientifically authentic justification for utilizing simulations, he 
restricted the potential knowledge gains of the simulation due to his view that variability can 
only (and fully) be explained by systematic sources, which he had insufficient information 
about. Challenged by the researcher to consider still what can be learned from the simula-
tion, Yoni ultimately agreed that “because we gave it [designed the Sampler according to] 
three normal days, it will give us samples of additional three normal days” [27]. Liv shared 
similar concerns (eg, “[we need] to understand how the climate affects it [RCLs]” [28]), but 
was generally more open about what can be learned from the Sampler about the Radon's 
yearly behaviour (eg, “I can maybe see a little more how a year would look like” [29]). Both 
students therefor now considered the role of the simulation as providing identical or similar 
results to those in the Sampler model, as opposed to the initial expectations they attributed 
to the scientists' practice, of learning more about the effects of environmental conditions.

Simulations as a tool to examine the probabilistic nature of random 
sampling process

As the students generated the first simulated sample, they both agreed its results resem-
bled greatly to their Sampler design, as they had expected (eg, “it will show that the ma-
chine builds a graph according to the data we give it and nothing more” [Yoni, 30]). Despite 
the similarities, both students were still reluctant to formulate any general claims as they 
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       |  1213STUDENTS' PURPOSES ENGAGING WITH SIMULATIONS

explained the resemblance fully by what they had designed (eg, “I chose the chances, and 
I did not choose them based on knowledge about the effects of climate but on those three 
days” [Liv, 31]), reflecting their view of the simulation's role as generating data almost identi-
cal to the Sampler design.

The students generated a second simulated sample and were surprised to discover “Oh, 
the data have changed!” [Yoni, 32]. Although initially disappointed by the unexpected dif-
ferences they were acknowledging, both students explained these by the real-world Radon 
behaviour they had seen in the preceding real-data investigation (eg, “it is reasonable that 
there would be days where the range is more towards the low side” [Liv, 33]), without con-
sidering sampling variability related to random sampling. When Yoni again articulated his 
cause-and-effect explanation for the variability (“where the cats sleep can affect the RCLs 
in the house” [34]), the researcher reminded the pair that they did not include the effects of 
environmental conditions in their Sampler design. In response, Yoni expressed, for the first 
time, a somewhat probabilistic expectation: “but this is probability … what are the chances 
that one of the samples would be between 50–350? 17% according to the percentages we 
gave it” [35], however claimed that “any one percent can still make drastic change” [36] re-
flecting an extreme view of sampling variability.

Yoni's reaction to the third simulated sample (Figure 2)  was quite extreme, “drastic 
change!” [37]. Liv, however, began noticing that despite the changes in the percentages in 
each column, there was something shared by all of the samples they have seen so far. While 
Yoni was worried that the “quantity itself has changed” [38] Liv explained:

39 L: Of course it [the percentage of a column] will change in terms of the concentrations 
because every day there is variation, but in terms of the ratio—that there is the fewest 
of this [lowest relative frequency, right bin, Figure 2] and then this one is next [second 
lowest relative frequency, left bin, Figure 2], the ratio stayed the same

The stable element Liv was now acknowledging was not the quantity or percentage within 
a single column but the relation between their relative frequencies [39]. Accepting Liv's 

F I G U R E  2   The third simulated sample the students were examining
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1214  |      DVIR and BEN-ZVI

claim, both students expressed a belief that this relation would also be found in the next 
simulated sample. Although the fourth simulated sample indeed adhered to their expecta-
tion, Yoni was still hesitant to infer more generally about samples' behaviour—“any sample 
that comes out, I don't trust it, because this is a limited software” [Yoni, 40]. Liv challenged 
Yoni's latter claim:

41 L: It [the simulation] is effective because it can show you data about other 72 hours, It is effective 
in what it does, it just does not know Radon, and neither do we … We can learn [from the 
simulation] about options that can happen in the same three days

Although Liv was also restricting the Sampler's ability to explain the Radon behaviour, she 
did see it as a means to learn something about “options” of the data that can be generated 
by it [41], articulating for the first time the Sampler's utility in exploring sampling variability 
or in her words the various “options” of samples that can be generated from the population 
they designed. Yoni rejected this purpose re-iterating his extreme view of sampling variabil-
ity (eg, “if it is based on probability then all the options that we gave it can happen” [42]). To 
support the pair in further elucidating what can be learned from the Sampler, the researcher 
suggested they invent a method to compare across multiple samples that would be more ef-
ficient. Liv suggested they write down the percentage of each column, using the TinkerPlots' 
pen that does not get erased upon generating new samples. The pair employed this method 
for four additional simulated samples, each time adding the notation of the respective per-
centages (Figure 3).

The pair were so engaged in the task that they continued it even when the researchers 
stepped outside the room. When they returned, the pair excitedly shared what they have 
learned: “that it is pretty consistent with what we said before, the hierarchy of the percent-
ages” [Yoni, 43], and then elaborated on the various numerical results that supported this 
claim. The researcher then inquired what they have learned from this in regards to samples 
size 72, in accordance with the activity's intended purpose [44]:

F I G U R E  3   A random simulated sample with the pair's notations tracking the relative frequencies over four 
simulated samples
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       |  1215STUDENTS' PURPOSES ENGAGING WITH SIMULATIONS

44 R2: So what does this mean? Can samples size 72 represent a population that looks like this 
[sampler design]?

45 L: Yes, for the same time period without changes

46 Y: Yes, basically

47 R2: That is different than what you [Yoni] said before … Alright how much? How much can it 
represent? Exactly? Would it come out exactly the same?

48 L: You can see that it is not exactly the same, there are many differences, but it's the same 
ratio, it's sort of the same

49 Y: It's still probability so there could be a week that everything rises

50 R2: Yes? It could be? What are the chances that would happen?

51 Y: Very very low, but it exists and if a chance exists it could still happen

52 L: There is a chance that many things will happen, but a really small chance

While both students were still concerned with the potential effect of different environmen-
tal conditions, both were now willing to infer that a sample size 72, given similar conditions, 
would represent the population from which it was generated [45, 46]. Asked to quantify the 
extenet of the potential differences they now expected, Liv expected that the stable ratio 
they observed will persist [45], while Yoni, again claimed that any outcome would be possi-
ble [46]. However, in response to the researcher somewhat challenging their claims, posing 
an extreme what-if scenario [47] and asking about its likelihood [50], both students now 
agreed that the chances for a significant difference were low [51, 52], expressing a more 
mature view of sampling variability. Although not explicitly discussed in the latter exchange, 
the pair's focus on the behaviour of the samples they generated, as opposed to the scientific 
behaviour of Radon, indicated that the actual role they were utilizing the simulation for was 
examining sampling variability.

As the conversation continued, Liv suggested: “maybe we can take out many many many 
[samples] and see if it [the column with the lowest relative frequency] ever comes out more” 
[53]. They started generating additional samples, one after the other, focusing on the relation 
between the green (lowest relative frequency) and pink (second lowest) columns (Figure 3). 
Liv expected that “it will never come out [that the pink would be taller than the green]” [54], 
while Yoni was eager to prove differently. Although they did not explicitly articulate it, both 
students were fully immersed in examining sampling variability, without mitigating it by their 
contextual cause-and-effects views. They were extremely excited when finally, after many 
samples, the two columns they focused on came out with equal relative frequencies (eg, 
“Boom!!! It's the same!” [Yoni, 55]), the opposite ratio, and even one case where one of the 
columns was empty (Figure 4).

While both students acknowledged that this happened “very very few times” [Yoni, 56] Liv 
seemed to be a little discouraged, “this variability is sort of … there are cases that are re-
ally” [Liv, 57], explicitly referring to the sampling variability she observed, that exceeded her 

F I G U R E  4   Samples in which the right and left bins had equal relative frequencies (left), the right bin had 
greater relative frequency (middle) and zero cases (right)
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1216  |      DVIR and BEN-ZVI

initial expectations. This motivated the pair to further their exploration of sampling variability, 
by formulating an expected range for the relative frequency of the mode (“39–68” [Liv, 58], 
“35–60” [Yoni, 59]. They again immersed themselves in generating additional simulated 
samples, jokingly keeping score (eg, “that's one for me” [Yoni, 60]). Yoni was excited to 
conclude that the range he suggested was “more accurate” [61], and the researcher seized 
the opportunity to connect his claims back to the issue of “trusting samples”, in accordance 
with the intended purpose of the activity [R2, 62], implying that his choice of smaller range 
actually expressed a higher degree of trust in the samples' representativeness, expecting 
less sampling variability. The pair therefore were at this stage utilizing the simulation to ex-
plore the probabilistic nature of random sampling processes and develop estimations for the 
maximum sampling variability, or maximum error.

Simulation as a tool to examine probabilistic behaviour of random 
sampling to inform the real-world data investigation

In the next lesson the students summarized their use of the simulation and its role. Liv 
claimed, “I think I do have something to learn from 72 hours, and ultimately also that device 
that they [the scientists] want is only for 72 hours” [63], explicitly connecting the activity to the 
scientists' real goal of collecting data with their invented short-term measurement device. 
She then stated, “If I would have known more about the behavior of Radon, I could have 
learned more [from the simulation], but you can learn from this and off course there is a 
range of error” [64], connecting the ranges of sampling variability they previously examined 
to their meaning in the real-world scientific context. Yoni summarized what he had learned 
from the simulation also referring to the real-world scientific device and its goal: “That device 
is intended to say the room is dangerous or not dangerous, and for that [purpose]—72 hours 
are enough” [65].

When asked if a result of 80, using the scientists' device, would be considered dangerous 
or not, based on what they had learned from the simulation about the behaviour of Radon, 
Liv noticed that while the scientists' device provides a mean RCL, their Sampler model and 
the data they generated from it did not allow for exploring the mean. The pair therefore 
decided to construct a different Sampler model of the yearly RCLs that included their con-
jectured mean. They spent the remainder of their probability-world investigation utilizing the 
simulation to examine the sampling variability in relation to the mean of their simulated sam-
ples and concluded that 96 hourly measurements (4 day) would be more reliable than 72 
(3 days). The connections the students articulated between the results of the simulation and 
the scientists' goals and devices, as well as adjusting their model to explore the behaviour of 
the type of measurement the scientists create and analyse, indicated the students were, at 
this point, utilizing the simulation to examine the probabilistic nature of the random sampling 
process to inform their real-world data investigation.

CONCLUSIONS

Adopting a socio-cultural perspective of learning (Rogoff, 2003) and considering purposes 
as an inseparable aspect of the students' actual culture, the designed intended culture and 
the authentic disciplinary culture (Hod & Sagy, 2019; Nasir et al., 2006), this research set 
out to explore their potential discrepancies. In accordance with this lens, we focused on a 
practice students engaged in, utilizing simulations, with the goal of examining a main aspect 
of their actual culture and enculturation to the target disciplinary culture: the actual pur-
poses young students can attribute to IMA-inspired simulation activities, and how these can 
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       |  1217STUDENTS' PURPOSES ENGAGING WITH SIMULATIONS

change as they engage with the simulation tool. The pair expressed four actual purposes, 
three of which were far removed from its intended purpose (Ainley et al., 2006). The first re-
lates to a main authentic scientific purpose of deriving scientific insight (Stoltze, 1997), how-
ever reflectied more the students' perception of the scientific practice than the fully authentic 
scientific purpose (potentially introduced to the students through the science classroom cul-
ture they had experienced). The second reflects a more statistical purpose of randomly gen-
erating data (Cobb, 2007), but is infused with a naïve view of the data generating process, 
void of considerations of non-systematic sources of variability such as sampling variability. 
The third likewise reflects a statistical purpose of randomly generating data, but considers 
the role of the data generation as a means to examine the probabilistic nature of random 
sampling processes, accompanied with a more mature view of sampling variability. The final 
purpose was relatively aligned with the intended purpose of the IMA-inspired simulation use 
(Manor & Ben-Zvi, 2017) of connecting the experienced probabilistic behaviour of samples 
(sampling variability) with the real-world investigated context that instigated the need for the 
probabilistic investigation.

Overall, although initially attributing a different purpose to the simulation, as the students 
deepened their engagement with the simulation device they seemed to gradually and emer-
gently appropriate its intended purpose. We refer to the process as emergent to reflect it 
was the students' choice to align their actual purpose with the designed intended purpose, 
but that is not to say they were not encouraged or scaffolded to do so. The main aspects 
of the overall activity design that facilitated the gradual appropriation process were: (1) the 
researchers' prompts (providing requested information [18]; asking to elaborate [20]; re-
iterating [23] or challenging the students' claims [4], [47], [50]; and referencing the intended 
purposes [44], [62]); (2) the freedom to reshape their use of the simulation tool (documenting 
the relative frequencies as in Figure 3, [53], [58–60]); and (3) the discussion norms between 
the students (eg, [21–22]) and with the researcher (eg, [23–24]). The latter was particularly 
consequential as Liv seemed to appropriate the intended purpose earlier in the learning 
sequence ([22]), and her disagreements with Yoni played a key role in his later appropriation 
of it [eg, [41], [44–51]).

These findings reify other studies that have pointed to the role of the overall classroom 
culture the simulation activities are part of (Garfield et al., 2012; Hillmayr et al., 2020), and 
extend them to show how these can contribute to students' developing the intended pur-
pose even if initially they attributed to it other purposes. Beyond illustrating again the af-
fordances of making abstract concepts and processes more tangible (Arcavi, 2003), our 
findings also show how students' use of the simulation revealed their initial naïve views 
(Liu & Lin, 2010) of relevant disciplinary concepts, and how these matured alongside their 
gradual appropriation of the purpose of the simulation activities. The gradual maturation 
process the students' actual purposes underwent is similar to Lavie and Sfard's (2019) 
depiction, implying how authentic disciplinary purposes, not just practices or procedures, 
often need to be nurtured and developed. Together, these highlight additional aspects 
of the pedagogical potential of doubly authentic simulation activities, as gateways to the 
authentic culture. These also suggest practical implications for supporting students' en-
gagement in doubly authentic activities, including freedom to explore emerging concerns 
using the available tools, challenging naïve views or purposes they express and foster-
ing productive negotiation norms. While further research is necessary to examine the 
generalizability of our results, the case presented in this paper, despite its idiosyncrasy, 
illustrates how building on students' personal purposes, even if they differ from those 
intended by design or those of the authentic culture, can support them to gradually ap-
propriate the authentic practices, by means of developing the intended purpose inspired 
by the authentic purpose of the practice.
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